
THE CALEGARI–GERAGHTY METHOD

TOBY GEE

Abstract. This is based (very closely indeed in some places) on [Tho], as well

as [CG18]. I also took a few things from [Sta13] without citation.

1. Commutative algebra

1.1. Projective dimension. Recall that if M is an A-module, then a projective
resolution of M is an exact sequence

· · · → Pn → Pn−1 → · · · → P1 → P0 →M → 0.

If A is Noetherian and M is a finite A-module, then we can take the Pi to be finite
free.

1.1.1. Definition. We say that M has projective dimension d if there is a projective
resolution of M with Pn = 0 for n > d, and if Pd 6= 0 for any projective resolution
of M .

In particular, proj.dimM = 0 if and only if M is projective.
In the case that (A,m) is local, projective modules are free, and we have the

following notion of a minimal resolution.

1.1.2. Definition. Let (A,m, k) be a local ring, and let M be an A-module. A
projective resolution

· · · → Pn → Pn−1 → · · · → P1 → P0 →M → 0

is minimal if all of the maps Pi ⊗A k → Pi−1 ⊗A k are zero.

By Nakayama’s lemma, minimality is equivalent to demanding that for each i,
Pi−1 maps onto a minimal set of generators for coker (Pi → Pi−1). It’s easy to see
that if M is finitely generated then it has a minimal projective resolution by finite
free A-modules, and in fact this resolution is unique in an appropriate sense (e.g.
up to non-unique isomorphism in the derived category, see e.g. [KT17, Lem. 2.3]).

1.1.3. Lemma. If (A,m, k) is local, and M is a nonzero finite A-module, then
proj.dimM is the length of every minimal free resolution of M , and is equal to the
smallest integer i such that TorAi+1(k,M) = 0.

Proof. We can compute TorAi+1(k,M) by taking the homology of the tensor product

of a projective resolution ofM with k; so if i ≥ proj.dimM , then certainly TorAi+1(k,M) =
0.

Suppose that

0→ Pn → · · · → P0 →M → 0
1
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is a free resolution of M , and let i be minimal such that TorAi+1(k,M) = 0; then n ≥
proj.dimM ≥ i. If the resolution is minimal, then by definition all the differentials
in the complex

0→ Pn ⊗A k → · · · → P0 ⊗A k →M ⊗A k → 0

are zero, so that TorAi+1(k,M) = Pi+1 ⊗A k is zero if and only if Pi+1 = 0 if and
only if i ≥ n, as required. �

1.2. Depth. Matsumura ([Mat89, §16]) says: “The notion of depth is not very
geometric, and rather hard to grasp, but is an extremely important invariant.”
That makes me feel a bit better, at least.

Let A be a ring and let M be an A-module. An element a ∈ A is M -regular if
ax 6= 0 for all 0 6= x ∈M . A sequence a1, . . . , an ∈ A is an M -regular sequence if:

(1) For each 1 ≤ i ≤ n, ai is M/(a1, . . . , ai−1)M -regular, and
(2) M/(a1, . . . , an)M 6= 0.

1.2.1. Remark. Note that this depends on the order of the sequence. One can
however show that if A is Noetherian, M is a finite A-module, and a1, . . . , an is an
M -regular sequence with (a1, . . . , an) ⊂ rad(A), then any permutation of a1, . . . , an
is an M -regular sequence.

1.2.2. Definition. Let A be a ring, let I be an ideal of A, and let M be a finite
A-module such that M 6= IM . Then the I-depth of M is by definition the length
of a maximal M -regular sequence in I.

If A is local with maximal ideal m, then by the depth of M we mean the m-depth.

We will in fact only use depth in the Noetherian local case, where it behaves
well; if you drop either Noetherian or local, it can misbehave.

1.2.3. Lemma. Let (A,m, k) be a Noetherian local ring. Let M be a nonzero finite
A-module. Then depth(M) is equal to the smallest integer i such that ExtiA(k,M)
is nonzero.

Proof. Let i(M) denote the smallest integer i such that ExtiA(k,M) is nonzero. We
will see by induction that i(M) < ∞. Note firstly that for the base case of the
induction, we have depth(M) = 0 if and only if every element of m is a zerodivisor
on M , if and only if m is contained in the union of the set Ass(M) of associated
primes of M , if and only if m ∈ Ass(M) (by prime avoidance), i.e. if and only if
i(M) = 0.

Hence if depth(M) or i(M) is > 0, then we may choose x ∈ m such that

• x is a nonzerodivisor on M , and
• depth(M/xM) = depth(M)− 1.

Consider the long exact sequence of Ext-groups associated to the short exact
sequence 0→M →M →M/xM → 0:

0→ HomA(k,M)→ HomA(k,M)→ HomA(k,M/xM)
→ Ext1A(k,M)→ Ext1A(k,M)→ Ext1A(k,M/xM)→ . . .

Since x ∈ m all the maps ExtiA(k,M) → ExtiA(k,M) are zero, so it is clear that
i(M/xM) = i(M)− 1. Induction on depth(M) finishes the proof. �
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1.2.4. Theorem (The Auslander–Buchsbaum formula). If (A,m) is a Noetherian
local ring, and M is a finite A-module of finite projective dimension, then

proj.dimM = depth(A)− depth(M).

Proof. We use induction on proj.dimM . If proj.dimM = 0 then M is free, so the
result is clear. Otherwise, we look at the start of a minimal free resolution:

0→ N → F →M → 0

where F is chosen to have minimal rank, and N 6= 0. We have proj.dimN =
proj.dimM−1 by Lemma 1.1.3, so it is enough to show that depthM = depthN−1.

Suppose firstly that depthN < depthA. Looking at the long exact sequence
of Exti(k,−) from the short exact sequence above, we see that if i+ 1 < depthA,
then the map Exti(k,N)→ Exti+1(k,M) is an isomorphism, and by Lemma 1.2.3
we get depthM = depthN − 1

Now suppose that depthN ≥ depthA. By the inductive hypothesis, we have
depthN = depthA, and N is projective (and we also have depthF = depthA,
since F is free). Writing d = depthA, we have

0→ Extd−1(k,M)→ Extd(k,N)→ Extd(k, F ),

and we also see that Exti(k,M) = 0 if i < d−1. We need to show that Extd−1(k,M) 6=
0, so it is enough to show that the map Extd(k,N)→ Extd(k, F ) vanishes; but this
follows from minimality, because the map N → F vanishes modulo m. �

1.2.5. Lemma. Let (A,m) be a Noetherian local ring, and let M,N be nonzero
finite A-modules. Then ExtiA(N,M) = 0 if i < depth(M)− dim(N).

Proof. If dim(N) = 0 then we filter N by copies of k and conclude by Lemma 1.2.3.
Otherwise we can filter N by submodules whose successive subquotients are of the
form A/P with P prime, and using long exact sequences of Exti we reduce to the
case N = A/P . Since dim(N) > 0 we can choose x ∈ m \ P , and the result then
follows from a consideration of the long exact sequence of Exti coming from the
short exact sequence

0→ N → N → N/xN → 0;

indeed we have dim(N/xN) = dimN−1, so by induction we have Exti(N/xN,M) =
0 if i < depth(M) − dim(N) + 1, and so we have that x kills Exti(N,M) if
i < depth(M)− dim(N), and we are done by Nakayama. �

1.2.6. Corollary. If (A,m) is a Noetherian local ring, M is a finite A-module,
and P ∈ Ass(M), then depth(M) ≤ dim(A/P ).

Proof. We have HomA(A/P,M) 6= 0, so this is immediate from Lemma 1.2.5. �

1.2.7. Corollary. Let A be a Noetherian local ring. If N is a finite A-module, and
0 6= M ⊆ N , then depth(N) ≤ dim(M).

Proof. Let P be an associated prime of M (and hence of N). Then by Corol-
lary 1.2.6, we have

depth(N) ≤ dimA/P ≤ dim(M). �

We end this section with a standard result about regular local rings.

1.2.8. Lemma. If (A,m) is a regular Noetherian local ring, then depth(A) =
dim(A).
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Proof. By Corollary 1.2.6, we need to show that there is a regular sequence in m of
length dimA. We will only need to apply the lemma in the case that A is a power
series ring over a DVR, in which case the existence of such a regular sequence is
clear. In fact, if A is regular, then any minimal set of generators of m is a regular
sequence, see [Sta13, Tag 00NQ]. �

1.3. The key lemma. The main new piece of commutative algebra that makes the
Calegari–Geraghty version of Taylor–Wiles patching work is the following lemma.

1.3.1. Lemma. Let l0 ≥ 0 be an integer and let S be a Noetherian regular local ring
of dimension d ≥ l0. Let P be a perfect complex of S-modules which is concentrated
in degrees 0, . . . , l0. Then dim(H∗(P )) ≥ d − l0, and moreover, if equality occurs,
then:

(1) P has a unique non-zero cohomology group, namely H l0(P ), and
(2) H l0(P ) has depth d− l0 and has projective dimension l0.

Proof. Let δi : P i → P i+1 denote the differential and let m ≤ l0 denote the smallest
integer such that Hm(P ) 6= 0. Consider the complex:

P 0 → P 1 → . . .→ Pm.

By assumption, this complex is exact until the final term, and thus it is a projective
resolution of the S-module Km := Pm/ im(δm−1). It follows that the projective
dimension of Km is ≤ m. On the other hand, we see that

Hm(P ) = ker(δm)/ im(δm−1) ⊆ Km,

and thus

d− dim(Hm(P )) ≤ d− depth(Km) = proj.dim(Km) ≤ m,
where the first inequality is Corollary 1.2.7, and the equality is the Auslander–
Buchsbaum formula, together with Lemma 1.2.8. So we have dimHm(P ) ≥ d−m ≥
d− l0, as required.

Suppose that dim(H∗(P )) ≤ d−l0. Then it follows from the argument above that
the smallest m for which Hm(P ) is non-zero is m = l0, that dim(H l0(P )) = d− l0,
that P is a resolution of H l0(P ), and that proj.dim(H l0(P )) = l0, completing the
argument. �

2. The abstract Calegari–Geraghty–Taylor–Wiles setting

We now explain the importance of Lemma 1.3.1. When we have carried out the
patching argument, we will have the following data. Let E/Qp be a finite extension
with ring of integersO and residue field k (e.g. in [Tho], we haveO = W (k)). Let C0

be a perfect complex of O-modules, concentrated in degrees [q0, q0+l0], and suppose
that R is a complete local Noetherian O-algebra with a homomorphism

R→ EndD(O)(C0).

Let S∞ = O[[S1, . . . , Sr]] for some r ≥ 0. Then we assume that we have:

• A perfect complex C∞ of S∞-modules, concentrated in degrees [q0, q0 + l0].
• A complete local O-algebra R∞, with a surjection O[[X1, . . . , Xg]] � R∞,

where r − g = l0; and a map S∞ → R∞ equipped with an isomorphism
R∞ ⊗S∞ O ∼= R.
• An S∞-algebra homomorphism R∞ → EndD(S∞)(C∞).

https://stacks.math.columbia.edu/tag/00NQ
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• An isomorphism of complexes of O-algebras C∞⊗S∞ O ∼= C0 such that we
have a commutative diagram

R∞

��

// EndD(S∞)(C∞)

−⊗L
S∞O

��
R // EndD(O)(C0)

Now, using that the action of S∞ factors through R∞, and the assumption that
r − g = l0, we see that

dimS∞ H∗(C∞) = dimR∞ H∗(C∞) ≤ dimR∞ ≤ dimO[[X1, . . . , Xg]] = dimS∞−l0,

where the first equality follows from the fact that R∞/AnnR∞(H∗(C∞)) is a fi-
nite S∞/Ann S∞(H∗(C∞))-algebra, because R∞/AnnR∞(H∗(C∞)) injects into the
finite S∞-module EndD(S∞)(C∞).

We can therefore apply Lemma 1.3.1 (with S = S∞, P = C∞), and we deduce
that Hq0+l0(C∞) has projective dimension l0 as an S∞-module, and depth and
dimension both equal to dimS∞ − l0. Now we have

dimS∞ − l0 = depthS∞
Hq0+l0(C∞) ≤ depthR∞

Hq0+l0(C∞)

≤ dimR∞

≤ dimO[[X1, . . . , Xg]] = dimS∞ − l0,

where the first inequality is by definition (and the S∞-action factoring through R∞),
and the second inequality is Corollary 1.2.6. Equality must hold in all the inequali-
ties, so sinceO[[X1, . . . , Xg]] is an integral domain and dimR∞ = dimO[[X1, . . . , Xg]],
we have R∞ = O[[X1, . . . , Xg]].

By Auslander–Buchsbaum we must have proj.dimR∞
Hq0+l0(C∞) = 0, soHq0+l0(C∞)

is a projective R∞-module. (Note that there is a subtlety here: we need to know
that Hq0+l0(C∞) has finite projective dimension over R∞ in order to be allowed
to apply Auslander–Buchsbaum! However, we have just shown that R∞ is regu-
lar, and in fact every finite module over a regular local ring has finite projective
dimension, see [Sta13, Tag 00O7].)

Passing to the quotient we see that Hq0+l0(C0) = Hq0+l0(C∞)⊗S∞O (note that
this is a tensor product, with no Tor terms, because we are in top degree) is free
over R∞ ⊗S∞ O = R; in the applications, this also shows that R equals the Hecke
algebra acting on C0. Moreover, as explained in [GV18, §13], since we have shown
that C∞ is quasi-isomorphic to Hq0+l0(C∞), we have that C0 is quasi-isomorphic
to Hq0+l0(C∞)⊗L

S∞
O, and in particular the cohomology groups of C0 have a free

action of TorS∞(R∞,O).

3. Construction of complexes

3.1. You might now worry that we have to do a lot of work in order to construct
the complexes that we need. In fact, the construction is very close to being the
same as the one from Fred’s talk last week. In particular, there are no changes at
all to the Galois deformation theory or the construction of Taylor–Wiles primes.
(One confusing subtlety that I am ignoring here, following [Tho], is that Taylor–
Wiles patching is better phrased in terms of homology rather than cohomology;
and indeed in [GV18, §13] things are written for homology.)

https://stacks.math.columbia.edu/tag/00O7
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I will simply remind you of the setup and assumptions that we make. Assume
that p ≥ 5 is unramified in the number field F , that ρ : GF → GL2(Fp) has
inverse cyclotomic determinant, is finite flat at all places dividing p and unramified
at all places not dividing p, and ρ|GF (ζp)

is irreducible. Then we have a universal

deformation ring Rρ for deformations satisfying these same conditions.
We let G = PGL2 /F , and we let XU = G(F )\G(AF )/UU∞ for some appro-

priate compact open subgroup U . We have a Hecke algebra TU action on a com-
plex C(XU ,O), and we conjecture that for the non-Eisenstein maximal ideal m
of TU corresponding to ρ, there is a homomorphism Rρ → TU,m satisfying natural
local-global compatibility hypotheses. Note that this is an assumption about the
existence of appropriate Galois representations for all degrees of cohomology.

As well as this assumption, we need the crucial Calegari–Geraghty vanishing as-
sumption, that the cohomology groupsH?(XU , k)m are concentrated in degrees [q0, q0+
l0] = [r1, r1 + r2], where F has r1 real places and 2r2 complex places.

The output of our patching construction is then as above, with R = Rρ and C0 =
C(XU ,O). S∞ comes from the action of the diamond operators at the Taylor–
Wiles primes, and the S∞-algebra homomorphism R∞ → EndD(S∞)(C∞) ulti-
mately comes from the first of our assumptions, and the assumption that C∞ is
concentrated in degrees [q0, q0 + l0] of course comes from the cohomological vanish-
ing assumption

With this setup, there are only a few things that have to be dealt with differently
to the case l0 = 0. The patching argument now has to patch complexes rather than
just modules. The basic idea here is that by replacing complexes with minimal
resolutions, one can make everything appropriately finite. See [KT17, §3], or [GN16]
for an approach using Scholze’s version of the patching argument with ultrafilters.

There is also the issue of comparing the cohomology at different level structures
at the Taylor–Wiles primes, which was more straightforward in the l0 = 0 case,
when the cohomology groups are free over the diamond operators. This comes
down to a local calculation in the Iwahori Hecke algebra. In the case of GL2 this
is straightforward, and a nice approach for GLn is in [KT17, §5]. This isn’t dealt
with in detail in [GV18, §13], but is explained for general G in [Ven16, Lem. 6.6].

Note finally that in fact we hardly ever know that the assumptions that we’re
making literally hold, even if F is totally real; but for the purposes of proving
modularity lifting theorems, there are many possible weakenings of the assumptions,
and tricks, so it is still possible to prove some useful modularity lifting theorems
without proving the full strength of the conjectures.
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